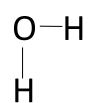
Water Notes

Objective: what are the important properties of water, and what is the fundamental reason that they exist?


Additionally we will learn some new water vocabulary words and review some you should know.

1. A water molecule is It does NOT HAVE	
---	--

Water molecules are _	. Water has	due to a great difference
in the	values between the oxygen and hydrogen atoms.	

The dipole arrows have a + end and an arrowhead that indicates "where" the electrons move towards (higher electronegative atoms.

Draw 2 dipole arrows onto this molecule \rightarrow

2. Connect the water molecules with proper hydrogen bonding. Use a COLORED PENCIL lines

3. Define Hydrogen Bonding:

4.	Get 6 red/white water molecule magnets now, each as	Red and	_ white magnets.	That means that
	the red magnet is and the white m	nagnets are		
5.	Connect them into a 6 molecule ring. This shape is a			<u> </u>
6.	If you squish the 6 magnets (water molecules) in your hand than when in the ring shape. The density of pure water is		them slowly they	take up less space
	or you could say it this way as well	l		·
7.	The density of ICE must be:	since	ice floats in liqui	d water.
8.	The hole in the ring creates a slightly greater frozen into a ring with a space in the middle, something that	at the liquid	for the 6 r water just doesn't	nolecules of water have.
9.	Liquid water freezes at what temp?	or _		
10	. To melt one gram of ice → one gram of water it would take	e adding the	of_	
11	For water, that constant is		_	
12	. With an ice cube in your hand, the			
13	Skip this one			
14	How many water molecules does it take to form a normal of	crystal of ice	e?	
15	. How many points does a normal SNOWFLAKE have?			

For real, do you see the connection between #14 and #15? That's important for your life and talking to little kids and parents. If you share this people will think you to be even brighter than you actually are. That's nice.

16. Water has a high BOILING POINT. This is due to	
Water is hard to boil, there are s A LOT of intermolecular	to overcome.
17. Water has a low VAPOR PRESSURE.	
This is due to	
Vapor pressure is the extra pressure created by an evaporating liquid inside of a closed system, table	
18. Water has SURFACE TENSION.	
This is due to	
19. Surface tension is	
20. Solid water (ice) can FLOAT on liquid water. This is due to	
How many water molecules does it take to form a normal crystal of i	ce?
21. Water has a very high SPECIFIC HEAT CAPACITY CONSTANT This is due to	
22. The specific heat capacity constant for water is	
23. Water has THE ABILITY TO CREATE SOLUTIONS. This is called	
This is due to	

24	
25. This means that	
or (most) ionic con	npounds.
Or	
26. Oils and other	
(but not water w	hich is polar)
27. Water has the ability to form HYDF	ATED IONIC COMPOUNDS.
This is due to	
28. Examples of hydrated ionic compo	unds include &

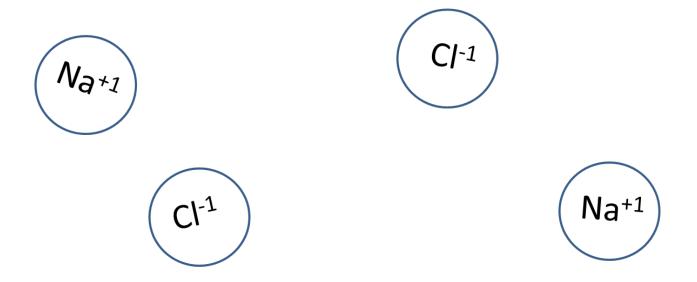
29 Vocabulary	Correct choice	Definitions
Solvation		A. unable to dissolve, (precipitates)
Solute		B. the part of the solution that solute dissolves into (the water part)
Solvent		C. the process of dissolving into a liquid
Aqueous		D. able to dissolve
Soluble		E. holding as much solute in solution as possible (Charlie choc. milk)
Insoluble		F. dissolves into the solvent in a solution (the salt in salty water)
Saturated		G. holding less solute in solution than is possible (Janet choc. milk)
unsaturated		H. dissolved in water

0. For salty water, the solute is the	, the solvent is the	
1. For chocolate milk, the solute is the	, the solvent is the	
2. Table G is titled:	at standard pressure	
Standard pressure is	or	
3. The Y axis (up/down) is solubility in units	s of	
4. Which really means this		-
5. The X axis has these units	<u> </u>	
6. How many grams of KCl fits into 100 m	L of water at 10°C? grams	
7. How many grams of KClO ₃ fits into 100 i	mL of water at 40°C? grams	
8. How many grams of potassium nitrate fits	s into 100 mL of AQ solution at 50°C?	gram
9. How many compounds are on this graph?		
B. How many lines go "up" as the temperatur	re rises?	
C. How many lines go "down" as the tempera	ature rises?	
D. How many of these compounds are IONIC	C?	
. How many of these compounds are MOLI	ECULAR?	
0. How do we make sense of these statemen	ats???	
onic compound solubility		

41.	How many lines can you look at on this graph at any time?		
42.	When an ionic compound like KI or NaCl goes into water, what particles end u	p in the wat	er?
43.	When something like sugar $C_{12}H_{22}O_{11}$ go into water, what particles end up in the	e liquid wa	ter?
44.	How many g of NH ₃ fit into 100 mL of water at 90°C?		
45.	When water (or any solvent) holds the maximum amount of solute at a given te	mperature,	
	this solution is said to belik	e:	
46.	How many grams of ammonia fit into 50 mL of water at 90°C?		
47.	How many grams of KCl fit into 100 mL of water at 10°C?	_ grams	
48.	How many grams of KCl fit into 350 mL of water at 10°C?	_ grams	show work
49.	How many grams of NH ₃ fit into 100 mL of water at 10°C?	_ grams	
50.	How many grams of NH ₃ fit into 12.0 mL of water at 10°C?	grams	show work

52. How many grams of sodium nitrate w	ill it take to saturate 64.0 mL of water a	at 283 Kelvin?
	53 OIL 54. WATER	
56. In this case the OIL is		
	THEY ARE	
57. The reason that the oil is ON TOP and oil	I not on under the water is that the	
A box of biscuits. A box of	f mixed biscuits, and a bis	scuit mixer. [©]
58 Immiscible:like water and oil. V	Vater is polar, oil is nonpolar.	
59 Miscible:like vegetable oil and olive	oil (both nonpolar) — or water and et	hyl alcohol (both polar)

This question is the same type, but asked a bit differently:


51. How many grams of KClO₃ solute fits into 844 mL of water at 373 Kelvin? (show work)

60.	60. When a solution holds the most solute possible in the solvent it is said to be				
61.	1. If the solution holds LESS than that maximum amount of solute, it's called:				
62.	2. Charlie Chocolate milk would be				
	while Janet's is				
63.		circle one)			
64.	4. Is a 100 mL NaNO _{3(AQ)} at 25°C saturated if it contains 93 g NaNO ₃ ? YES or NO (ci	rcle one)			
65.	5. How many grams of NaCl will saturate a 100 mL solution at 90°C?	grams			
66.	6. If you put 43 g NaCl into 100 mL, what would happen?				
67.	7. Will a 100 mL NaCl _(AQ) at 90°C be saturated if it contains 43 g NaCl?,				

NaCl_(S)

	Temp	Solute	If a solution contains this Mass in g	Is it Saturated or Unsaturated?	If unsaturated, how many more grams are needed to saturate this solution?
69	30°C	HCl	60 g		
70	60°C	KNO ₃	100 g		
71	10°C	NaNO ₃	80 g		
72	90°C	NH ₄ C1	73 g		
73	20°C	KC1	20 g		
74	5°C	NaCl	31 g		

75 Arrange water molecules around these loose mobile ions of sodium chloride that have ionized into water.

Surfac	etants	
	oap is a surfactant. It can break the	
78. S	urfactant =	
79. S	oap is partially+ partially	
00 T	h 1	
80. 1	he polar "head" gets dissolved; the	
Т	This allows water to escape "out of" the surface, or stuff to "fall thi	rough" the surface of the water.
81	create gaps in the surface hydrogen	oonding.
	il molecules (vegetable oil, motor oil, mineral oil, etc.) are all nor Then oil is put into water, why can't the oil dissolve into the water	
Becau	ecause the water is polar, the oil is nonpolar. The water "can't catch" the oil droplets, they slip through the water's grasp.	
	the oil is nonpolar. The water "can't catch" the oil droplets, the	ey slip through the water's grasp.
	The oil floats because oil has	than the water.
83. H	ow many grams of KClO ₃ fits into 100 mL of water at 90°C?	grams
84. Ho	ow many grams of KClO ₃ fits into 100 mL of water at 40°C?	grams
	you have a saturated KClO _{3(AQ)} at 90°C and put it into a cooler an	d the temperature drops to just 40°C,
W	hat could possibly happen to all that KClO ₃ that was in solution?	

76. Explain in one sentence why the water molecules are going to orient themselves to the ions in solution.

	86.	A 100 mL saturated solution	of KNO ₂ is at 60°0	C. It is cooled to 20°C.	Describe what happens.	Do math.
--	-----	-----------------------------	--------------------------------	--------------------------	------------------------	----------

The rate of	= the rate of	
	This is dynamic equilibrium	
The last water class		
87. What happens when you put 140 g	KI into 100 mL water at 10°C?	
88. Does this "STOP"?		
89. What does happen?		
Label this picture. 90.		
91		EW)
92. In a	,	
the rate of the	_ reaction is equal to the rate of the	reaction.
93. In this case we could say that the	rate of SOLVATION	rate of PRECIPITATION
94. When $NaCl_{(S)} \rightarrow Na^{+1}_{(AQ)} + Cl^{-1}_{(AQ)}$	this is called	or
95. Does sugar, C ₁₂ H ₂₂ O ₁₁ do this?	How does sugar dissolve into wate	r?

To be an electrolyte, First, you must be		
Second, you must become	in water	
Which provides		in solution
Loose mobile ions conduct		
IONIC but NOT AQ is		(AgCl or CuS say)

AQ but not IONIC is ______ (sugar water)

96. Electrolytes The hardest vocab word of the year

	Substance	Is this an electrolyte?	Will this conduct electricity?
97	NaCl _(AQ)		
98	NaCl _(S)		
99	NaOH _(AQ)		
100	NaOH _(S)		
101	$\mathrm{AgCl}_{(\mathrm{AQ})}$		
102	$\mathrm{AgCl}_{\mathrm{(S)}}$		
103	$C_{12}H_{22}O_{11(AQ)}$		

104. Is Be(OH) ₂ an electrolyte? Can it conduct electricity?
105. What about Be(OH) _{2(L)} (melted beryllium hydroxide), will that be able to conduct electricity?
106. How is that possible?
107. If liquid Be(OH) ₂ can conduct electricity, is it an electrolyte?, because
108. When sodium chloride goes into water, we would write the "equation" this way:
$NaCl_{(S)}$ $Na^{+1}_{(AQ)} + Cl^{-1}_{(AQ)}$
109. This is called or
110. Does sugar do this? What does sugar do?
Sugar
Sugar is NOT IONIC, it dissolves because the molecules are,
but it dissolves into
111. Show the dissociation or the ionization for sodium nitrate in water with phase symbols:
112. Show the dissociation or the ionization for potassium phosphate in water with phase symbols
112. Show the dissociation or the ionization for potassium phosphate in water with phase symbols
112. Show the dissociation or the ionization for potassium phosphate in water with phase symbols
112. Show the dissociation or the ionization for potassium phosphate in water with phase symbols